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Single-Phase Fluorescein Tracer Test Prior to CO2 Injection

FIELD METHOD
• Brine pumped at 51.4 gpm
• Steady flow was developed 24 

hrs. prior to tracer injection
• Fluorescein tracer was added to 

injection water, c0 = 21.6 ppm
• Water samples collected every ½ 

hr. throughout test
• Water samples analyzed on site 

using a spectrophotofluorometer
with detection level of ~ 6 ppb

• Test duration 15.7 days
Balanced Dipole



Single-Phase Dipole Semi-Analytical Model Description
(Grove and Beetem, 1971)

Dipole Model MODEL ASSUMPTIONS AND CONDITIONS

• Horizontal steady-state flow
• Homogeneous, isotropic aquifer of constant 

thickness
• Constant longitudinal dispersivity αL
• Ignores diffusion, adsorption, retardation and 

transverse dispersivity αT
• 1-D flow through a finite length column is 

used to model dispersion along individual 
streamlines.

ANALYTICAL PROCEDURE
• Analytical solution predicts travel time between wells for a dipole
• Travel time is used in 1-D dispersion solution to yield c/c0 for each streamline
• Each streamline contribution is added to produce total c/c0 at discharge well
• Superposition is used to calculate solution for finite length tracer pulse

Grove, D.B., and W.A. Beetem, 1971, Porosity and dispersion constant calculations for a
fractured carbonate aquifer using the two well tracer method, Water Resour. Res., 7(1),
pp. 128-134.



Fluorescein Data Match to Dipole Model

Breakthrough Curve for Fluorescein - Dipole Test
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• Improved match using 
longer tracer injection 
period. 

• First arrival predicted by 
model = 7 days

• First arrival based on 
data = 8.9 days

• Late time data confirms 
first arrival based on 
model prediction

Tracer Inj.
Time (hr)

Dispersivity, 
αL (ft)

Effective 
Porosity (%)

Saturated 
Thickness (ft)

1.15 0.28 34.2 27.5

1.69 0.83 34.5 27.5

Parameter
Summary  



Gas-Phase Krypton Tracer Test During CO2 Injection

FIELD METHOD
• CO2 injected at 69.2 gpm
• CO2 flow field was developed 

prior to tracer injection
• Krypton gas tracer was added to 

injected CO2, c0 = 36.9 ppmV
• Gas samples collected every 

hour using U-Tube sampler
• Gas samples analyzed on site 

using a quadrupole mass 
spectrometer with method 
detection level of ~ 50 ppbV

• Test duration 3 days

5000 ft



Radial Analytical Dispersion Model Description
(Hoopes and Harleman, 1967)

MODEL ASSUMPTIONS AND CONDITIONS

• Horizontal steady-state flow
• Homogeneous, isotropic aquifer of constant 

thickness
• Constant longitudinal dispersivity αL
• Ignores diffusion, adsorption, retardation and 

transverse dispersivity αT
• Solution is inaccurate near the injection well 

for early times
• Model does not account for buoyancy

ANALYTICAL PROCEDURE

• Analytical solution to the radial dispersion equation predicts c(t, r)/c0 for 
constant concentration source

• Superposition is used to calculate solution for finite length tracer pulse

Hoopes, J.A., and D.R.F. Harleman, Dispersion in radial flow from a recharging well,
J. Geophys. Res., 72(14), 3595-3607, 1967. 



Krypton Data Match to Radial Model

Breakthrough Curve for Krypton During CO2 Injection
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Data

• First arrival in 53.47 
+/-0.5 hours

• Departure of late-time 
data implies back 
diffusion of krypton 
into brine after peak 
concentration passes 
observation well

Tracer Inj.
Time (hr)

Dispersivity, 
αL (ft)

Effective 
Porosity (%)

Saturated 
Thickness (ft)

0.13 0.16 8.4 10.3

No delay

Parameter
Summary  



Comparison of Tracer Test Results
Single-Phase Dipole Fluorescein Test
Tracer Inj.
Time (hr)

Dispersivity, 
αL (ft)

Effective 
Porosity (%)

Saturated 
Thickness (ft)

1.15 0.28 34.2 27.5

1.69 0.83 34.5 27.5

Multi-phase Radial CO2 /Krypton Test
Tracer Inj.
Time (hr)

Dispersivity, 
αL (ft)

Effective 
Porosity (%)

Saturated 
Thickness (ft)

0.13 0.16 8.4 10.3

• Saturation estimate = 24% (8.4/34.5)



Conclusions
• Dispersivity values and classic shape of the tracer breakthrough curves 

imply Frio is a relatively clean, homogeneous sandstone.
• Given the limitation of these simple models:

– CO2 moved along preferential pathways representing roughly 1/3 
of the available saturated thickness.

– CO2 saturation along these pathways is estimated to be 24%.
– The CO2 injection efficiency, defined as the effective volume 

occupied by the CO2 divided by the effective volume of the total 
reservoir, is about 9%

• Models are very sensitive to the porosity value 
• Diffusion of gas into the brine could play an important role in 

sequestering additional quantities of CO2



Recommendations Acknowledgments

• Eliminate wellbore storage 
effect by collecting downhole 
samples during tracer injection

• Inject CO2 containing tracers at 
different rates to determine 
corresponding saturations and 
optimum injection efficiency

• Quantify benefit of sequestering 
additional CO2 by in situ
diffusion mechanism

• U.S. Dept of Energy, NETL

• Field Operations:

Paul Cook and Alex Morales 
(LBL), Seah Nance (TBEG), 
and Ed “Spud” Miller, David 
Freeman, Bill Armstrong, and 
Dan Collins (Sandia 
Technologies)




